Originally appeared in AOPA Pilot magazine.
Strapped in a fiberglass glider, the pressure demand oxygen system is forcing air into our lungs. We are climbing on the lee side of the snow-capped Sierra Nevada at the end of a 200-foot tow rope and a question comes to my mind as we're heading for rotor, an area of massive turbulence: When do I release?
Normally, this isn't a difficult question. There are three rules at Minden, Nevada, the current Mecca of mountain wave soaring. You should yank the release knob if either the towplane or the glider rolls inverted; the tow pilot and the glider pilot get so mishmashed in the horizontal tornado that they end up looking at each other; or when you connect with glass-smooth mountain wave — what Minden is famous for.
On a mid-April morning, as the melting snow is trickling down the peaks and the ski resorts are closing, we're flying a Grob 103, a type of glider I have a lot of faith in from many hours of flying one above the mountains in Utah. Andrew McFall, Soar Minden's operations manager, sits in the rear seat. He is a veteran of some 25,000 glider flights and he has that construction-worker tan from spending much of his life under a plastic canopy. Most of the time the rotor here is benign, but it has been known to generate forces of plus or minus 15 Gs. "There are probably three days a year that it will knock your teeth out," McFall says. "You have to attack rotor with a certain amount of fear." He ought to know. He's been rolled over twice in the towplane but never in a glider. Tow pilots try to tow above and perpendicular to the rotor so that the glider pitches instead of rolls. Sometimes you can see the air churning where rotor usually resides at the mountain-peak level, but it also likes to move around. It acts as a gateway to the big lift. The location of the rotor is established on the first flight of the day, or what McFall calls the test flight. Last year two days were deemed too wild to fly, even for Minden.
As we near the rotor zone, McFall tells me to forget about maintaining precise formation and concentrate on keeping the towplane in sight. A key is to keep slack out of the towline. If things go awry, loops can form and work their way back, threatening to squeeze the life out of the glider like a boa constrictor. My left hand is on the dive brake lever to slow the slippery craft and carefully take out the slack if things get interesting. Surprisingly, we only get knocked around slightly, not like having your shins battered by the bottom of the instrument panel as your feet fly off the rudder pedals in rough air. When we connect with the wave, it's unmistakable and so perfectly smooth. There's no feeling, no sudden rush in airspeed, just the instruments indicating a climb. No question. It's time to release.
We head toward Heavenly Valley Ski Resort and climb through a hole in the clouds, trying to remain within the lift band. When low in wave you have to circle or make turns back and forth to stay above a reference point on the ground until you get high enough and the winds aloft equalize your forward speed. Climbing at 400 to 500 fpm — weak for wave — we quickly make our way through 12,000 feet when McFall notices something peculiar. The clouds are closing — our hole, our escape hatch, is disappearing. I open the dive brakes, point the nose down, and descend at the optimum rate. We shoot back through it just as it closes.
McFall's concern is well founded. He had been caught above the gray abyss before when he was with a student. (Gliders normally don't pack blind-flying equipment.) They used the standard time-tested procedure to get down: Call air traffic control, trim for 50 knots, put the glide in a 10-degree bank, hold on to the shoulder straps, and stay off the controls. Since the controllers were able to get a radar paint, they gave McFall updates on his position so he would know where he was when they broke out. It worked perfectly. McFall is careful not to let this happen to us, though.
I have come to Minden to learn about these powerful forces that can bring down even the largest of airliners, hoping the wave will carry me up to 20,000 or 30,000 feet. For centuries mountain waves were shrouded in mystery as people gazed toward the heavens at eerie lenticular clouds that remained stationary above the peaks, unlike other clouds that made smooth tracks across the sky. Gliders were the first to fully explore this phenomenon in a scientific way. They say that when you get high enough over the Carson Valley you can see the Pacific Ocean glistening in the distance some 200 miles away. It becomes all the more alluring.